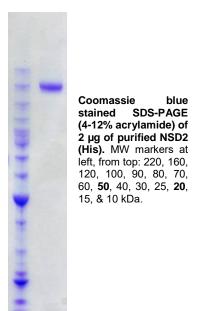


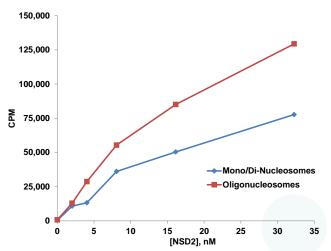
PRODUCT DATASHEET

NSD2 (His) (WHSC1, MMSET)

CATALOG NO.: HMT-21-138 LOT NO.:

DESCRIPTION: Human recombinant NSD2 (residues 2-1365 (end); Genbank Accession # NM_001042424; MW = 155.5 kDa) expressed in *Sf9* insect cells with an N-terminal His-tag. Catalyzes the transfer of methyl groups from S-adenosyl-L-methionine (SAM) to the ε-amino function of protein L-lysine residues, specifically lysine-36 of histone H3 (H3K36)¹ with, depending on substrate, activities also reported at H3K4², H4K20² and H4K44¹ (see also review³). NSD2's H4K20 methylation may be linked to double strand breaks and the DNA damage response⁴, whereas its principal regulatory functions appear to occur via methylation of H3K36^{5,6}, a mark associated with active transcription. NSD2 is overexpressed in multiple myelomas with the t(4;14) translocation⁷. NSD2 knockdown in such cells induces apoptosis⁵, while overexpression of catalytically active NSD2 promotes oncogenic transformation and tumor formation even in the absence of the translocation⁶. In addition to t(4;14)+ multiple myelomas, NSD2 expression is elevated in a variety of cancers (bladder^{8,9}, breast⁸, prostate⁸, kidney⁸, lung^{8,9}, pancreas⁸, colon⁹, stomach⁹, anal canal⁹, female genitals⁹, skin⁹, neuroblastoma¹⁰) and its carcinogenic effects may be mediated by interaction with β-catenin and effects on the WNT pathway⁸. Consequently, NSD2 is eliciting strong interest as a possible target for anti-cancer therapeutics^{3,8}.


PURITY: >90% by SDS-PAGE


ASSAY CONDITIONS: RBC's NSD2 displays histone methyltransferase activity at concentrations of 15.6 nM-1 μM, 60 min. reactions, 30°C, as TCA-precipitated counts in a scintillation/filter plate assay (Multiscreen FB, Topcount), with HeLa oligo or mono/dinucleosomes (0.05 mg/mL as [DNA])). Reaction conditions are: 50 mM Tris-HCl, pH 8.5, 50 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 1 mM PMSF, substrates at concentrations indicated above.

SUPPLIED AS: __ μ M NSD2 (__ μ g/ μ l total protein) in 50 mM Tris/HCl pH 7.5, 500 mM NaCl, 1 mM TCEP, 10% glycerol (v/v) as determined by OD₂₈₀.

STORAGE: -70°C. Thaw quickly and store on ice before use. The remaining, unused, undiluted enzyme should be snap frozen, for example in a dry/ice ethanol bath or liquid nitrogen. Minimize freeze/thaws if possible, but very low volume aliquots (<5 µl) or storage of diluted enzyme is not recommended.

REFERENCES: 1) Y Li et al. J. Biol. Chem. 2009 **284** 34283; 2) J. Marango et al. Blood 2008 **111** 3145; 3) M. Morishita & E. di Luccio Biochim. Biophys. Acta 2011 **1816** 158; H. Pei et al. Nature 2011 **470** 124; 5) E. Martinez-Garcia et al. Blood 2011 **117** 211; 6) A.J. Kuo et al. Mol. Cell 2011 **44** 609; 7) J.J. Keats et al. Blood 2005 **105** 4060; 8) G. Toyokawa et al. Neoplasia 2011 **13** 887; 9) H.R. Hudlebusch et al. Clin. Cancer Res. 2011 **17** 2919; 10) H.R. Hudlebusch et al. Cancer Res. 2011 **71** 4226

Methylation Activity of NSD2 with HeLa Mono/Di- and Oligonucleosomes. Assays were performed with a scintillation/filter plate assay. Incubations were 60 min., 30°C with HeLa mono/di-nucleosomes (RBC Cat. # HMT-35-123) or HeLa oligonucleosomes (RBC Cat. # HMT-35-130), both 0.05 mg/mL as [DNA], and 1 μ M [3 H]-SAM.

This product is not intended for therapeutic or diagnostic use in animals or in humans.

Reaction Biology

1 Great Valley Parkway, Malvern PA, USA 19355 requests@reactionbiology.com www.reactionbiology.com